Extensions 1→N→G→Q→1 with N=C22xDic3 and Q=C10

Direct product G=NxQ with N=C22xDic3 and Q=C10
dρLabelID
Dic3xC22xC10480Dic3xC2^2xC10480,1163

Semidirect products G=N:Q with N=C22xDic3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C22xDic3):1C10 = C5xDic3:4D4φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):1C10480,760
(C22xDic3):2C10 = C5xC23.21D6φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):2C10480,765
(C22xDic3):3C10 = C10xD6:C4φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):3C10480,806
(C22xDic3):4C10 = C5xD4xDic3φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):4C10480,813
(C22xDic3):5C10 = C5xC23.23D6φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):5C10480,814
(C22xDic3):6C10 = C5xC23.14D6φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):6C10480,818
(C22xDic3):7C10 = C10xC6.D4φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):7C10480,831
(C22xDic3):8C10 = C10xD4:2S3φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):8C10480,1155
(C22xDic3):9C10 = C2xC10xC3:D4φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3):9C10480,1164
(C22xDic3):10C10 = S3xC22xC20φ: trivial image240(C2^2xDic3):10C10480,1151

Non-split extensions G=N.Q with N=C22xDic3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C22xDic3).1C10 = C5xC6.C42φ: C10/C5C2 ⊆ Out C22xDic3480(C2^2xDic3).1C10480,150
(C22xDic3).2C10 = C5xC23.16D6φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3).2C10480,756
(C22xDic3).3C10 = C5xDic3.D4φ: C10/C5C2 ⊆ Out C22xDic3240(C2^2xDic3).3C10480,757
(C22xDic3).4C10 = C10xDic3:C4φ: C10/C5C2 ⊆ Out C22xDic3480(C2^2xDic3).4C10480,802
(C22xDic3).5C10 = C10xC4:Dic3φ: C10/C5C2 ⊆ Out C22xDic3480(C2^2xDic3).5C10480,804
(C22xDic3).6C10 = C2xC10xDic6φ: C10/C5C2 ⊆ Out C22xDic3480(C2^2xDic3).6C10480,1150
(C22xDic3).7C10 = Dic3xC2xC20φ: trivial image480(C2^2xDic3).7C10480,801

׿
x
:
Z
F
o
wr
Q
<